Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle.

نویسندگان

  • Leandro Royer
  • Eduardo Ríos
چکیده

Since its discovery in 1971, calsequestrin has been recognized as the main Ca(2+) binding protein inside the sarcoplasmic reticulum (SR), the organelle that stores and upon demand mobilizes Ca(2+) for contractile activation of muscle. This article reviews the potential roles of calsequestrin in excitation-contraction coupling of skeletal muscle. It first considers the quantitative demands for a structure that binds Ca(2+) inside the SR in view of the amounts of the ion that must be mobilized to elicit muscle contraction. It briefly discusses existing evidence, largely gathered in cardiac muscle, of two roles for calsequestrin: as Ca(2+) reservoir and as modulator of the activity of Ca(2+) release channels, and then considers the results of an incipient body of work that manipulates the cellular endowment of calsequestrin. The observations include evidence that both the Ca(2+) buffering capacity of calsequestrin in solution and that of the SR in intact cells decay as the free Ca(2+) concentration is lowered. Together with puzzling observations of increase of Ca(2+) inside the SR, in cells or vesicular fractions, upon activation of Ca(2+) release, this is interpreted as evidence that the Ca(2+) buffering in the SR is non-linear, and is optimized for support of Ca(2+) release at the physiological levels of SR Ca(2+) concentration. Such non-linearity of buffering is qualitatively explained by a speculation that puts together ideas first proposed by others. The speculation pictures calsequestrin polymers as 'wires' that both bind Ca(2+) and efficiently deliver it near the release channels. In spite of the kinetic changes, the functional studies reveal that cells devoid of calsequestrin are still capable of releasing large amounts of Ca(2+) into the myoplasm, consistent with the long term viability and apparent good health of mice engineered for calsequestrin ablation. The experiments therefore suggest that other molecules are capable of providing sites for reversible binding of large amounts of Ca(2+) inside the sarcoplasmic reticulum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle

Contractile activation in striated muscles requires a Ca(2+) reservoir of large capacity inside the sarcoplasmic reticulum (SR), presumably the protein calsequestrin. The buffering power of calsequestrin in vitro has a paradoxical dependence on [Ca(2+)] that should be valuable for function. Here, we demonstrate that this dependence is present in living cells. Ca(2+) signals elicited by membrane...

متن کامل

Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms.

Sarcoplasmic reticulum (SR) Ca(2+) release in striated muscle is mediated by a multiprotein complex that includes the ryanodine receptor (RyR) Ca(2+) channel and the intra-SR Ca(2+) buffering protein calsequestrin (CSQ). Besides its buffering role, CSQ is thought to regulate RyR channel function. Here, CSQ-dependent luminal Ca(2+) regulation of skeletal (RyR1) and cardiac (RyR2) channels is exp...

متن کامل

Depletion "skraps" and dynamic buffering inside the cellular calcium store.

Ca2+ signals, produced by Ca2+ release from cellular stores, switch metabolic responses inside cells. In muscle, Ca2+ sparks locally exhibit the rapid start and termination of the cell-wide signal. By imaging Ca2+ inside the store using shifted excitation and emission ratioing of fluorescence, a surprising observation was made: Depletion during sparks or voltage-induced cell-wide release occurs...

متن کامل

Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixe...

متن کامل

Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization.

Calsequestrin, the major calcium storage protein of both cardiac and skeletal muscle, binds and releases large numbers of Ca(2+) ions for each contraction and relaxation cycle. Here we show that two crystal structures for skeletal and cardiac calsequestrin are nearly superimposable not only for their subunits but also their front-to-front-type dimers. Ca(2+) binding curves were measured using a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 587 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2009